ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ELECTRICAL AND COMPUTER ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
DESIGN of VARIABLE RELUCTANCE MACHINES	ECE-607	FALL	3 + 0	3	10

Prerequisite Courses NONE

Туре	Selective				
Language	English				
Coordinator	Prof. Irfan Alan				
Instructor	Prof. Irfan Alan				
Adjunt	None				
Aim	To understand the operating principles of variable reluctance machines and step motors, to investigate the types of machines and drives, to review the literature about the research and developments made, to analyze a certain type of machine together with its drive by simulating by a computer simulation program and to ponder upon possible new configurations.				
Learning Outcomes	 To be able to collect and understand information about the types and operating principles of Variable Reluctance Machines (VRM) available in literature To learn to simulate the operation and analyze in detail the various types of VRM configurations by means of a simulation program To be able to prepare and make a presentation about various VRM configurations and step motors found in literature To be able to produce original ideas to come up with a beter VRM configurations by making brain storming activity on the operating principles of reviewed machines from the literature 				
Course Content	 Fundamentals of VRM Analysis. Practical VRM Configurations. Current Waveforms for Torque Production. VRM Drives. Nonlinear Analysis. Performance Analysis of VRMs and VRM Drives by Software Simulations. Loss, Efficiency and Torque Calculations. Paper Reviews on the Subject. Evaluation of Selected Studies Carried on Reviewed Papers by means of Software Simulations. Step Motors. Various Configurations of Step Motors. Step Motor Control Methods and Step Motor Drives. Paper Reviews on the Subject. 				

WEEKLY TOPICS AND PRELIMINARY STUDY Week Topic **Preliminary Study** The relevant book chapters 1 and materials from the Paper reviews on the subject literature The relevant book chapters 2 Fundamentals of VRM analysis. and materials from the literature The relevant book chapters 3 Practical VRM configurations. and materials from the literature The relevant book chapters 4 Current waveforms for torque production. and materials from the literature The relevant book chapters 5 and materials from the VRM drives, nonlinear analysis. literature The relevant book chapters 6 Loss, efficiency and torque calculations. and materials from the literature

7	Performance analysis of VRMs and VRM drives by software simulations.	The relevant book chapters and materials from the literature
8	Step motors, various configurations of step motors, operating principles	The relevant book chapters and materials from the literature
9	Step motor control methods and step motor drives.	The relevant book chapters and materials from the literature
10	Evaluation of Selected Studies Carried on Reviewed Papers by means of Software Simulations	The relevant book chapters and materials from the literature
11	MIDTERM EXAM	
12	Evaluation of Selected Studies Carried on Reviewed Papers by means of Software Simulations	The relevant book chapters and materials from the literature
13	Evaluation of Selected Studies Carried on Reviewed Papers by means of Software Simulations	The relevant book chapters and materials from the literature
14	Student presentations on the reviewed literature and about the simulations made	The relevant book chapters and materials from the literature
15	Student presentations on the reviewed literature and about the simulations made	The relevant book chapters and materials from the literature
16	FINAL EXAM	

SOURCES	
Lecture Notes	Lecture notes and slides
Other Sources	 Course Textbook: "Electrical Machinery", Fitzgerald, 5th Edition, 1992, McGraw Hill Int. Lmtd . Additional Materials: "Theory and Application of Step Motors", Kuo, B.C., West Publishing, St. Paul, MN, 1974. ACSL Programi ve Programlama Kilavuzu. Konu hakkında yapılan yayınlar.

COURSE MATERIALS SHARING				
Documents	Lecture notes and slides			
Homeworks	Students will be given at least total of 7 analytical or simulation homeworks			
Exams	1 Midterm and 1 Final Exam			

EVALUATION SYSTEM					
SEMESTER STUDY	NUMBER	CONTRIBUTION			
MIDTERM	1	30			
Homework	7	35			
FINAL EXAM	1	35			
TOTAL		100			

Course Category			
Sciences and Mathematics	50%		
Engineering	50%		
Social Sciences	0%		

RE	RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS							
		Contribution Level						
NO	Program Qualifications	1	2	3	4	5		
1	Skills of using Mathematical, Science and Engineering Knowledge in Advanced Research					x		

2	Skills of analyzing, designing and/or implementing an original system which will solve an Engineering Problem	x
3	Skills of using software, hardware and modern measurement instruments for advanced research in one's field of expertise	x
4	Skills of planning, detailing and doing independent research	x
5	Skills of following literature, making and/or listening technical presentation, writing academic level article	x
6	Skills of finding original ways by means of innovative thinking and questioning	x

*Increasing from 1 to 5.

ECTS / WORK LOAD TABLE						
Activities	Number	Duration (Hours)	Total Work Load			
Course Length (includes exam weeks: 16x total course hours)	16	3	48			
Out-of-class Study Time (Pre-study, practice)	16	5	90			
Internet search, library work, literature search	16	3	48			
Homework	7	13	91			
Midterm	1	15	15			
Final Exam	1	20	20			
Total Work Load			312			
Total Work Load / 30			312/30			
Course ECTS Credit			10			